
Introduction to GPU Computing
chandlerz@nvidia.com 周国峰

Wuhan University 2017/10/13

mailto:chandlerz@nvidia.com

➢ GPU and Its Application

➢ 3 Ways to Develop Your GPU APP

➢ An Example to Show the Developments

GPUCPU

Add GPUs: Accelerate Science Applications

146X

Medical Imaging

U of Utah

36X

Molecular Dynamics

U of Illinois, Urbana

18X

Video Transcoding

Elemental Tech

50X

Matlab Computing

AccelerEyes

100X

Astrophysics

RIKEN

149X

Financial Simulation

Oxford

47X

Linear Algebra

Universidad Jaime

20X

3D Ultrasound

Techniscan

130X

Quantum Chemistry

U of Illinois, Urbana

30X

Gene Sequencing

U of Maryland

GPUs Accelerate Science

GPUs Accelerate Deep Learning

COMPUTER VISION

OBJECT DETECTION IMAGE CLASSIFICATION

SPEECH & AUDIO

VOICE RECOGNITION
LANGUAGE

TRANSLATION

NATURAL LANGUAGE

PROCESSING
RECOMMENDATION

ENGINES
SENTIMENT ANALYSIS

DEEP LEARNING FRAMEWORKS

Mocha.jl

NVIDIA DEEP LEARNING SDK

NCCLcuSPARSE TensorRTcuDNN cuBLAS

developer.nvidia.com/deep-learning-software

CPU Deliver Pizza

PROCESS

Delivery truck

delivers one pizza

and then moves to

next house

NVIDIA GPU Deliver Pizza

PROCESS

Many deliveries

to many houses

Small Changes, Big Speed-up

Application Code

+

GPU CPUUse GPU to Parallelize

Compute-Intensive Functions
Rest of Sequential

CPU Code

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

Maximum

Performance

OpenACC

Directives

Easily Accelerate

Applications

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-depth

knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus

enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions

encountered in a broad range of applications

Performance: NVIDIA libraries are tuned by experts

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
AlgebraIMSL Library

Building-block
Algorithms for CUDA

GPU-accelerated Libraries for HPC

ArrayFire Matrix
Computations

http://code.google.com/p/thrust/downloads/list

NVIDIA DEEP LEARNING SDK

NCCLcuSPARSE TensorRTcuDNN cuBLAS

developer.nvidia.com/deep-learning-software

GPU-accelerated Libraries for Deep Learning

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

OpenACC Directives

Program myscience

... serial code ...

!$acc kernels

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$acc end kernels

...

End Program myscience

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACCC

ompiler

Hint

OpenACC
Open Programming Standard for Parallel Computing

“OpenACC will enable programmers to easily develop portable applications that maximize
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of
Titan.”

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought together by members of the
OpenMP Working Group on Accelerators, as well as many others. We look forward to
releasing a version of this proposal in the next release of OpenMP.”

--Michael Wong, CEO OpenMP Directives Board

OpenACC Standard

Easy: Directives are the easy path to accelerate compute

intensive applications

Open: OpenACC is an open GPU directives standard, making GPU

programming straightforward and portable across parallel

and multi-core processors

Powerful: GPU Directives allow complete access to the massive

parallel power of a GPU

OpenACC
The Standard for GPU Directives

2 Basic Steps to Get Started

Step 1: Annotate source code with directives:

Step 2: Compile & run:

pgf90 -ta=nvidia -Minfo=accel file.f

!$acc data copy(util1,util2,util3) copyin(ip,scp2,scp2i)

!$acc parallel loop

…

!$acc end parallel

!$acc end data

OpenACC Directives Example
!$acc data copy(A,Anew)

iter=0

do while (err > tol .and. iter < iter_max)

iter = iter +1

err=0._fp_kind

!$acc kernels

do j=1,m

do i=1,n

Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &

+A(i ,j-1) + A(i ,j+1))

err = max(err, Anew(i,j)-A(i,j))

end do

end do

!$acc end kernels

IF(mod(iter,100)==0 .or. iter == 1) print *, iter, err

A= Anew

end do

!$acc end data

Copy arrays into GPU memory

within data region

Parallelize code inside region

Close off parallel region

Close off data region,

copy data back

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Directives: Easy & Powerful

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

GPU Programming Languages

CUDA FortranFortran

CUDA CC

Thrust, CUDA C++C++

PyCUDA, NumbaProPython

GPU.NETC#

MATLAB, Mathematica, LabVIEWNumerical analytics

Single precision Alpha X Plus Y (SAXPY)

Part of Basic Linear Algebra Subroutines (BLAS) Library

GPU SAXPY in multiple languages and libraries

A menagerie* of possibilities, not a tutorial

𝒛 = 𝛼𝒙 + 𝒚
x, y, z : vector

 : scalar

*technically, a program chrestomathy: http://en.wikipedia.org/wiki/Chrestomathy

void saxpy_serial(int n,

float a,

float *x,

float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

__global__

void saxpy_parallel(int n,

float a,

float *x,

float *y)

{

int i = blockIdx.x*blockDim.x +

threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

CUDA C

Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit

CUDA Fortran

Program GPU using Fortran

Key language for HPC

Simple language extensions

Kernel functions

Thread / block IDs

Device & data

management

Parallel loop directives

Familiar syntax

Use allocate, deallocate

Copy CPU-to-GPU with

assignment (=)

module mymodule contains
attributes(global) subroutine saxpy(n,a,x,y)
real :: x(:), y(:), a,
integer n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x-1)*blockDim%x

if (i<=n) y(i) = a*x(i) + y(i);

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
real, device :: x_d(2**20), y_d(2**20)
x_d = 1.0; y_d = 2.0
call saxpy<<<4096,256>>>(2**20,3.0,x_d,y_d,)
y = y_d
write(*,*) 'max error=', maxval(abs(y-5.0))

end program main

http://developer.nvidia.com/cuda-fortran

More Programming Languages

PyCUDA

Numerical

Analytics

C# .NET GPU.NET

Python

MATLAB

http://www.mathworks.com/discovery/

matlab-gpu.html

Get Started Today
These languages are supported on all CUDA-capable GPUs.

You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++

http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library

http://developer.nvidia.com/thrust

CUDA Fortran

http://developer.nvidia.com/cuda-toolkit

GPU.NET

http://tidepowerd.com

PyCUDA (Python)

http://mathema.tician.de/software/pycuda

Mathematica

http://www.wolfram.com/mathematica/new

-in-8/cuda-and-opencl-support/

http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
http://developer.nvidia.com/cuda-toolkit
http://tidepowerd.com/
http://mathema.tician.de/software/pycuda
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/

Thank you

developer.nvidia.com

